CHAPTER THREE
THEORY OF LINEAR EQUATIONS

3.1. Linear dependence and independence over a field

We begin our study of the linear dependence and independence of a set of vectors

x' %%, ..., x™ by the following definition.

DEFINITION 1. If there exists a sel of m vectors x x2, ..., %™ and a set of
m scalars ¢, 0, . . ., €y With a linear relation of the form

epx! +eaxt oo, 2™ =0

then the vectors x ', x7, . .., x™ are called linearly independent if the above
relation implies that

"—'I 5{,'-2:"':1‘:',”:0
But if one or more of the coefficients ¢, €3, . . . , €y can be non-zero, then the

vectors are called finearly dependent.

If the coefficients are real the vectors are said to be dependent over the field of
real numbers; likewise if the coefficients are complex the vectors are said to be
dependent over the field of complex numbers.

Example

Fig. (1} Fig.{2)

In figure 1 the vectors are linearly independent in the sense that there is no
linear relation of the type

-C,:'l:' + -E':;xz =
In other words if such a relation did exist, then ¢; = ¢; = 0. On the other hand the

i3
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vectors of figure 2 are linearly dependent for there exists a relation of the type

c..xl +{22}‘.‘2 =0, €02 +0

Example.  Test the dependence of the following vectors

{ o 1] z=[ﬂ] 1 3= il
X [l,x z,xandeIFt

We form the linear relation

1 0 0
@ [1] e [_z J 3 [ﬂ]
From which we obtain ¢, = €2 = 0:hence x' and 2 are linearly independent.

Example. Test the dependence of the following veclors

x1=[t,\, x1=[_f]], i2 =1, x! and x* €€C*

We form the linear relation

ad Bl i ] = (n]
1] § ] -1 0
There are No NON-ZET0 real scalars ¢y and ¢z 10 make the vectors dependent; in

other words

Cl +fl!'.'2_=0

eii—ez=0
implies that
03 S 0a = 0

Therefore the vestors are called independent over the field of real numbers.
However there exist non-Zero complex quantities ¢ and ¢y such that

u:'txl t+ ch2 =0

in other words such that xV and x? are lineatly dependent. For example one can
choose '

ey =1; f?q_:i!

The vectors x* and %% are hence said to be dependent over the field of complex
numbers.

Now we are in a position Lo list some theorems on the linear dependence and
independence of a set of vectors x, x%, ..., x"™. All these theorems rely on the
definition of linear dependence and independence cited before. A résumé of these
{heorems can be found in Kreko (1962), p. 117
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1. Any set of vectors containing the zero vector is linearly dependent.
Proof. If in the linear relation

cxlte,x?+ - 4e,x™=0
we have

Clz‘fz:"'=cm71=0

but ¢, # 0, we still obtain
Ox! +0x% +-- -+ 0x™ L +¢,,x™ =0,
if ¥ = 0. Hence x', ..., x™ are linearly dependent.

2. Any non-empty subset of a set of linearly independent vectors is itself a linearly
independent system.

Proof.  Assume that the vectorsx',x?, ..., x™ are linearly independent. If we
cancel one of them, say x*, the remaining system x?, . .., x™ is linearly independent.
For if the equation

Cox®tegxP 4 4e,x™=0
has a non-trivial solution for ¢y, . . ., ¢,,, then so does

cxltex? 44, x™m=0

if ¢; = 0. But this contradicts the assumption that x!, x2, . .., x™ are linearly
independent. Therefore, if we remove a vector from a system of linearly independent
vectors, the remaining vectors are still linearly independent. If we remove another
vector from the remaining ones, we still have a linearly independent system and so
on, which completes the proof.

3. If the vectors x!, x2, .. ., x™ are linearly dependent, at least one of them can

be written as a linear combination of the others.

Proof. Asx',x* ... ,x™ are linearly dependent, there exists a set of coefficients
Cly+ .+, Cpy, at least one of them non-zero, such that

ax! +epx? e, x™ =0
Let ¢; be such a non-zero coefficient. Hence we obtain
1 1 m
By === g b ¢ 2 ™)
Ci

4. If the vector y can be written as a linear combination of x!, . . ., x™ the set of
vectors y,x', ..., x™ form a linearly dependent set.

Proof

y=cx +- -+ ex™
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Hence
1 ] o
w3 tejat tepux™ =0

The set y, x', ..., x™ is linearly dependent, for at least the coefficient of y is
NON-Zero,

Now we can study further a vector system, which is a finite set of vectors in the
vector space V, and make the following definition.

DEFINITION 2. The rank of the set of vectors x!, x2, . . ., ¥ is equal to the
maximum number of linearly independent vectors in the set. This is equal to the
total number of vectors in the set minus the number of linear relations existing
among them.

The next theorems discuss properties of the rank of a vector system.

5. Ifris the rank of a vector system, every vector in the system can be written as a
linear combination of any r linearly independent vectors of the system, and this
representation is unique.

Proof.  Assume that r out of m vectors are linearly independent; call them
2 x? Any vector x* from the remaining (71 — r) vectors is linearly
dependent onx!, ..., x" by definition of the rank; and we obtain

cexftext v 4o x" =0
ie.

1
== (ex et ex’), o #0
Cy
=oyxl +- 0 +ax
Now for the second part of the theorem, assume that x* takes a different representa-
tioninx', ..., x" such as the following

¥ =t 4 @t

Subtracting the last two equations we obtain
0=(ay —@)x" ++ -+l —d&)x"

Butx!, ..., x" are linearly independent; hence we obtain
@ =0y, ..., 0= G,

and the proof is complete.

6. If a vector that can be written as a linear combination of the other vectors in the
system is removed from the given vector system, the rank of the system remains
unchanged.

Proof.  Let the vector system be x', ..., x", x™*!, ..., x™ of rank 7, and whose
first r vectors are linearly independent. Let us express x” as a linear combination of
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the rest, i.e.
5 =gl s g bt ey

The validity of the above equation stems from the fact that all vectors are linearly
dependent on x*, . . . ,x”. Now assume that the rank of the system without x” is
r — 1. According to the last theorem all the x* (fori=r+1,..., m) can be written
as a linear combination of the x/ (forj=1,...,r— 1), ie.

x'=ayx" +--~+ai,,41x"'1, i=r+l,...,m
And consequently

x"=(er Yo T R

+{cr_1 tCre1Otrp—1 T T Cm"-Mf'n,if'—l)xr’1

This shows that x” is linearly dependent on B s gl ! which contradicts the
assumption that the first 7 vectors are linearly independent. Hence, even in this
case the rank is preserved and the proof is complete.

7. If a vector system is changed by adding a vector which can be represented as a
linear combination of vectors already in the system, the rank of the system remains
unchanged.

Proof. Givpn a vector system x' x2,...,x™, let y be a vector which can be
represented as a linear combination of these vectors. Consider the vector system
x! x%,...,x™,y. According to the last theorem, removing y will not alter the

rank, hence both systems have the same rank and the theorem is proved.

8. If the vectors of the system «xE L ,x¥ can be represented as a linear

combination of the vectors ¥, ¥, . .., »” in the system, the rank of the system
i ,x¥ is at most equal to p.
Proof. Consider the system

xl’xZ, i &) :xk’ylayza i ’yp‘
According to the last theorem, the rank of the above system is equal to that of the
system »', . . ., ¥¥. As the rank of this set is at most equal to p, the result follows
immediately.

3.2. Dimension and basis

If in a vector space ¥ there is a maximum number of linearly independent vectors,
this number is called the dimension of the space. If m is such a number, then any
vector system consisting of m linearly independent vectors in the space is called a
basis. The vectors in a basis are called base vectors.

A fundamental property of a basis is that any vector in the vector space can be
represented as a linear combination of the base vectors, and this representation is
unique.
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To prove this proposition, let x!, . . ., x™ be a basis of the space of dimension m.

Let y be any other vector in the same vector space. The vector system x!, x2, . . . el

» has a rank equal to m, since there are no more than m linearly independent vectors

in the vector space, also since xl,xz, ..., x™ is of rank m, then according to

Theorem 5 in Section 3.1, ¥ can be represented uniquely in terms of the basis

2o, vy 20 L

Example. Let

1], #-[:]

be a basis in IR2. Any vector y, for example

=2 ]

can be written as

M H

givinge; = 1,¢9 = 2.

3.3. Orthogonality and biorthogonality of vectors
A set of vectors x*, x2, ..., x™ are called orthogonal to each other if

(xf x'y=0, foralli#j.

Example. The set of vectors

1 0 0
01, 1| 2
0 -2 1

are orthogonal in R3.
The definition of orthogonality enables us to deduce the following theorem.

THEOREM 1. Non-zero orthogonal vectors are linearly independent.

|
\
|
Proof. Letx!,x* ..., x™ be such vectors. Form the linear relation {
{

Xt +epx? e, x™ =0, |

|
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and proceed to prove that
C1=Cp =" T Clm =0.

Taking the inner product with x*, we obtain
eréxt,x'y=0

But
G xy =12t 13 >0

as x! # 0; hence
¢ =0

Similarly we can show that

ep=c3="""=cy=0

and the proof is complete.

The concept of orthogonality of vectors facﬁltates the expansion of any vector y
in terms of orthogonal vectors. For letx!, x%,...,x" beaset of non-zero
orthogonal vectors in a space of dimension 7, and y be any vector in the same space
that we desire to expand in the form
]

Y= CiX

=

1]

i=1
Taking the inner product with x/, we obtain
(x,»)

Cf= =y
{(x,xT)

If in addition we have

(xl, %=1,
the vector system x, ,x™ is called an orthonormal system and the vectors
x, ..., x" are called an orthonormal basis.
Example. Let
1 2 -2 -3
d=]21|, x*=| -1}, x’= 194 #= 0
0 -1 -5 4

Obtain ¢y, ¢ and ¢3 such that y = c1x1 +oax® + c3x3
Using the above technique we get:
{ {y,x ) xH) =3

C
15 xy 5
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N (y,x%) _—10
Czw(xE,xz)——6—
B (y,x%) - vl
. _(x3,x3)_—36~

Example. Transform the set of orthogonal vectors

1 2 -2
=121, x2=| -1 |, = 1
0 -1 -5

into an orthonormal basis.

Dividing by the norm of each we obtain the orthonormal basis as follows:

1] 2 ] -2 ]
V5 6 30
2 L8 1
xi=| —= |, x2=| —= |, *x3=| —=
n \/5_ n \/g n 30
il .
0 R RSP

Tt | V6 | | V30 |

A very simple example of an orthonormal basis in the space R” is the n-axis

e, ..., e" where

=]

1 0 0

0 1 0
ol of = b

0 0 1

Ifx!,...,x" are not orthogonal, but only independent, then to solve for the
coefficients ¢y, ¢q, - . . , €y, the equations

2 .
y=2, ax'
i=1

is to solve n linear simultaneous equations in 7 unknowns. Until this is studied in
later sections of this chapter, we use the concept of biorthogonality, which enables us
to obtain ¢, ¢, . . . , €y if the biorthogonal basis of x, x2,...,x" is known. We
start by making the following definition.

DEFINITION. Two sets of vectors x!, x%, . .., x" and y', »%, ..., " are called
biorthogonal if
(x/,y")=0, fori#j
#0, fori=j
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In the literature, we find some authors using the term reciprocal instead of
biorthogonal. The concept of biorthogonality enables us to establish the following
theorem.

THEOREM 2. If the two sets of vectors x!, x2, ..., x" and y!, %, ..., p" are

biorthogonal, the vectors of each set are linearly independent.

Proof. We prove here that x', x*, ..., x" are linearly independent. To prove that
¥, yz, ..., »" are linearly independent is similar. Form the relation
crxt teax? 4o, x" =0

and proceed to prove that
g =eg = vvo= g, =4

Taking the inner product with ¥, we obtain
L, x yt e (L xP )+ e Xy =0

All the terms from the second term up to the last are zero according to the
biorthogonality condition. Hence :

oyt xt3=0
However
hahy#0
according to the definition of biorthogonality. Hence
¢ =0
Similarly one can show that
By S0 L 20

and the proof is complete.

Example

a7, e 27, 2=T2], <[ 7]

The reader can check that the two sets x!, x* and »!, »? are biorthogonal.

The concept of biorthogonality facilitates the expansion of any vector v in
terms of any set of linearly independent vectors x', . . . , x" lying in a space of
dimension n if their reciprocal vectors y*, . . ., »" are known. For let

i .
=3, cix'
i=1
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To obtain ¢; we take the inner product of the above equation with yf giving

v vy
C= s o
Tyl X1y

Example. Let

1 1 0 1
o= |, xf=| L b, 22=1F |, »=] =i
K ) ;) 1
[0 4 i
y1= 2 ] y2= '—2 » J’Bz 2
| -1 1 1
Then if
v=ex! +epx? +egx’
we have
Cay =
C . —_ —
: (yLx'y 4
v wy 9
CHy = -
: (y,x%) 4
(y3v) 5
a2 = =—
ST x3y 4

3.4. The Grammian

Until now we have not given a method for testing the linear independence of vectors,
except by relying upon the definition of independence itself. We have set out the
linear relation

2

eix! e+ te,x™=0

and then proceeded to show that

e Nl T €]
Although the method seems simple, to show that the coefficients are all zero is a
very tedious exercise. The method to be explained in this section gives a straight-
forward answer to whether the vectors are linearly independent or not.
We define the Grammian matrix or Grammian for a set of vectors x', x%, ..., x™
as follows:
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el ey ... ™)
(x2,x1) (%%}
G =
i, Fr
(™, xb) Cp™™ %™
Therefore if 4 is the matrix whose columns are x', x2, . .., x™, it appears directly
that
G=A%A

from which we conclude that the Grammian G is Hermitian and consequently its
determinant is real. Moreover, the determinant of G can be shown to be greater
than or equal to zero, and the reader should do this as an exercise.

Now we proceed to give the test of linear independence for a set of vectors

x!,x2,...,x™ asaresult of the following theorem.

THEOREM 1. If the determinant of the Grammian of a set of vectors

x! x%, ..., x™ is greater than zero, the vectors are linearly independent.

Proof Form the linear relation
epxt tepx? +e o tex™ =0,
and proceed to prove that
== =cm=0.

Taking the inner product of the above equation first with x!, then x?, until x™, we
obtain :

R R . gt ™) ¢y
Lo ') L S (x%,x™) ¢

=0
e (x™. x”) Cin

Hence if | G| > 0, then according to Exercise 2.1.14, we obtain
cg=cy =" "=cp=0

and the proof is complete.

THEOREM 2. A necessary and sufficient condition that xL, B R ALE
linearly dependent is that their Grammian determinant is zero.

Proof. Necessity can be established from Exercise 2.1.14. To prove sufficiency we
notice from Exercise 2.1.14 that if the Grammian determinant is zero we have two
possibilities: either the coefficients are zero which is trivial, or the coefficients may
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not be zero, i.e. there exists a non-trivial solution for the coefficients, which
completes the proof.

A special case arises when x', . . ., x™ lie in the space R™ or €. In this case
the matrix A, whose columns are the vectors xb, oL, x™, will be square, and we get
the following results which are special cases of Theorems 1 and 2 above,

1. If | A| #0, then x*, . . ., x™ are linearly independent
2. A necessary and sufficient condition that x!, ..., x™ are linearly dependent is
that [4]=0

The proof of the above results is direct, and so it is left as an exercise for the reader.
One important result of the Grammian is that if xt ..., x™ lie in the space

R” or € with m > n, then x!, . . ., x™ are linearly dependent. In other words, one

cannot find in the Euclidean space of dimension # more than » linearly independent

vectors, See Exercise 2.1.18.

3.5. The Gram—Schmidt process

Sometimes it becomes useful to obtain a set of orthogonal vectors from a set of
independent vectors. One such use is met when dealing with the eigenvalue problem
of Hermitian matrices as will be seen in the next chapter. The method of generating

n orthogonal vectors from # linearly independent vectors is called the Gram—Schmidt
process and is as follows.

Let x!, x2, ..., x" be a set of linearly independent vectors and it is required to
obtain from them a set of orthogonal vectors yL¥%, ..., " We choose the last
vectors as follows:

pl =y

yr=x+ax!
and proceed to find a such that y* and y* are mutually orthogonal, Taking the
inner product with ', we obtain
Ly r=(xl, y?)=0=(x!, x? )+ a(x!, x")
Hence
(x', x%)

—(xl,xl)

Choose y? in the following manner:

< 1

¥y x> +(:2x2 tepx

and proceed to find ¢; and ¢, such that 3, % and y! are mutually orthogonal.
Taking the inner product with y*, we obtain

(Ly3r=(xl, y3r=0=(x!, x3 Yt cpfal, X2 ) + et x1)

Now if »? is made orthogonal on x2, then y* will consequently be orthogonal on
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2. Hence taking the inner product with x? gives
(x2,y3)=0=(x2,x*)+ er{x?, x2 )+ e {x?,x")

The above two equations can be put in the following form:

(2}, %1y (xt, x? )] l:cl] _ [(xl, x3)

g vy e L] ew ey
The matrix on the left-hand side has a non-zero determinant, for it is the Grammian
of the two linearly independent vectors x! and x?. Therefore the coefficients ¢;
and ¢, can be calculated uniquely.

The process can be prolonged similarly on y* if it is defined as

y*=xt +opxt tepx? o3’

and so on until we take y" to be

Py =x" + ey x! tepxt ot ey x"!

The coefficients ¢y, €2, - - - » Cn—1 are obtained by solving the linear equations
{xt ! s WmE® 4 ct )
¢ ™) e ca
i B &on WG b B § 0 L a™)

The matrix of the left-hand side is nonsingular for it is the Grammian of the set of
linearly independent vectors b o g

Exercises 3.5

1., [Ext= [_;] ,x2 = [g] Y= [;] , find ¢; and ¢y such that
1 2

y=c1x tepx”.
7. Determine the dimension of the vector space of the set of vectors

xT=11 3 01, »T=12 -5 0}, T=[-1 7 o0l.

1
3. Explain why we cannot write ¥ = | 2 | in terms of the two non-zero orthogonal
5
1 4
vectors | —1 | and| 4
0

n

4. Show that 3 <xf,y)x =y, if (x', x )= 8, with 8 = 1G:=1), 85 = 0G #1).
i=1

5: lf(xi,xj)= 1, (=1, and(xi,xj)z 0, (i #j), show that

n n
3,y)=% lel?, ify=Y e
i=1

i=1



46 ADVANCED MATRIX THEORY FOR SCIENTISTS AND ENGINEERS

6. If y is orthogonal on xl, ...,x™ show that y is orthogonal on any vector which
is a linear combination of B

7. 1 {x!, x7y=1,( =/), and {(x', x’ ) = 0 ({ #/) show that the matrix A, , whose
columns are x!, . .., x" is unitary.

8. Expandy = [;] , (i? = —1), in terms of x! = [;] and x% = [_%]

1 1 3 1 —1
9. Determine the rank of the vectors | 3 | .| 2 |, 24,101, 4
2 5 0 1 7
1 2+ 4+ 30
10. Determine the rank of the vectors | i |, | —2 3 -5 i ==1).
0 1 2
1 0 0
11. Under what condition will the rank of the vectors 0 r—72 k-1
0 2 k+2
i A
0 | be less than three?
3

12. Prove that A*A4 is diagonal if and only if the columns of 4 are mutually
orthogonal, and that A4* = I if and only if the rows of A are mutually orthogonal
unit vectors (4 need not be square).

13. Show that, if x, ¥ and z are mutually orthogonal vectors,

lx+y+zly=xI3+1yI13+0z13)%

14, Ifx*, ..., x™ are linearly independent, show that il, ..., %™ are also linearly

independent.

15. Let L be the linear space of finite trigonometric sums
x=cpsint+eysin2t+- ek sin kt (0< e <21

where ¢y, 3, . . . are real coefficients. Show that the vectors sin ¢, . . . , sin k¢

constitute a basis for L. Hence show how to obtain ¢y, €2, - - - -
16, 1f (x', p1y=1, (i=1), and {x,y7) = 0, (i #]), show that
n n " n
(v,v)=, o= Y, Gy, if v = Y cplandv =Y ;¥', which gives a relation
i=1 i=1 i=1 i=1
n 1
between c; and ¢;; hence show that Z o;¢; and E @c; are real, for both are equal
i=1 i=1
1}
to {v, v), which is real. Finally show that Y & ={a, Gyo), where
i=1

of = [eyoy . .. | and Gy, is the Grammian matrix for the vectors ¥'.

17, Iah, x2 ..., x™ are linearly independent as well as yly2, ..., %, and
(x' y’)=0for all i, ], show that %!, ..., x™, ', ..., »" are linearly independent.
18, 1fx', x%, ..., x" €R" are linearly independent and are all orthogonal on a

vector v, show that v =0.



THEORY OF LINEAR EQUATIONS 47

19. If ', uz, .., u™ are asetof linearly independent vectors, show that the
vectors v!, v?, ..., v where BrE Eklazkuk, with o arbitrary and not zero, are also
a set of linearly independent vectors, Show also that the set v, TN pmHl

are linearly dependent.

3.6. Rank of a matrix

Let A,, » be a matrix which contains m rows and r columns. Assume without loss
of generality that m <n. A can be seen as consisting of m vectors in an n-dimensional
Euclidean space, the rank of which will be denoted by p (row rank). Obviously

prsm

Also A can be seen as consisting of n vectors in an m-dimensional Euclidean space,
the rank of which will be denoted by p¢ (column rank). Obviously

peSm

The following theorem establishes the relation between the row rank and the
column rank of a matrix.

THEOREM 1. In amatrix 4, the number of linearly independent row vectors
is equal to the number of linearly independent column vectors. In other words row
rank p, = column rank p. = rank of 4 denoted by p.

Proof. Let the number of linearly independent column vectors in Ay, b pc

and the number of linearly independent row vectors be p,. Select p, linearly
independent columns of A and put them in a matrix B, whose dimension is (1, p¢)-
As a result of Theorem 5 of Section 3.1 every column of A can be written as a linear

combination of these independent vectors. If x',x2, ..., x" are the columns of 4,
then

xl = Bl Vl

xt=B %

x" =Bv"

where the components of v are the coordinates of x! w.r.t. the basis consisting of the
column vectors of B;. Hence

A= (B Byt ... Bv"] =g [ .. V'] =BiB;.

This means that the row vectors of A are linear combinations of the row vectors of By.
It follows that the rank of the system of row vectors of A cannot exceed the number
of row vectors in B, . This means that

Pr<Pc-
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If we consider the transpose of 4 we obtain

Pe <Py,

from which we conclude that

Py = Pe
Example
1 -1
0 2
&l P
1 0

The matrix A has two columns in R*; hence p. < 2. One can use the test of
independence to show that p, = 2. 4 also has four vectors in IR?, hence p, < 2.
Similarly it can be shown that p, = 2. Hence p, = p. = 2. In this example the rank is
obtained easily because it is equal to the number of columns, and so calculating it is
equivalent to making sure that the two columns are linearly independent, in other
words by using the test of independence. However in some examples we find that
the rank is less than both the number of rows and the number of columns; then we
need methods for calculating the rank.

THEOREM 2. Let A be a matrix of order (m, n). Suppose that A has a sub-
matrix S of order (r,7) with | S | # 0. And suppose that every sub-matrix T of order
(r + 1,7+ 1) of which S is a sub-matrix has | T|=0.Then p(4) =r.

Before proceeding with the proof, let us explain the theorem by an example. Let

01 01 2 0 3
4=|l0 2 0 2 4 0 6
g 1 0 2 4 -1 #

The submatrix

i

has | S | # 0, but every (3, 3) sub-matrix T including S has [ T'| = 0, e.g.

1 1 2 1 1 0 0 1 1
2 2 4l|=0, |2 2 o|=0, [0 2 2|=0.
1 2 4 i & 1 D -1 2

Hence from the theorem we conclude that p(4) = 2. Now we proceed with the
proof.

Proof. Let S be composed of the linearly independent row vectors x,...,x"in
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the following manner:

Construct a sub-matrix 5 as follows
!l

S'=[S:v]=
x"
where  is any column vector. Now S’ has rank =, as the reader can verify. And as
T can be written without loss of generality in the following form

~[£]

then | T | = 0 implies that the row vectors of T are linearly dependent, i.e.

2

ClelI +c‘2x' ¥ ¥ '+nyrr t et = 0

where

Cri1 F0;

1

otherwise all the other coefficients ¢, will be zero since x'!,x"*, ..., x"" are linearly -~

independent, hence
u=ox" toagx? + - tox"

where oy, @, . . . , & are scalars.

Applying the same procedure to all sub-matrices of order (r+1,r+1)in which
S is a submatrix; and use Theorem 7 in Section 3.1 to complete the proof.

One direct application of this theorem is when 4 is Hermitian of rank r; then
at least one principal minor of order r is not zero. The proof of this corollary is left
as an exercise for the reader.

3.7. Elementary row and column operations

There are sets of elementary row and column operations which can be executed on
any matrix A to reduce it to an echelon form. These operations can be achieved by

pre-multiplying A by a set of matrices (R, R3, R3) for rows or by post-multiplying
A by a set of matrices (Py, Py, P3) for columns. The elementary row operations are

of three types:

Ry, responsible for interchanging any two rows
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Ry, responsible for multiplying any row by a non-zero scalar
Rj, responsible for adding to any row any other row multiplied by a non-zero
scalar.

Ry, Ry and R are all generated from the unit matrix 7, by applying on the latter
the same change which we require for the matrix A. For example if we want to
interchange the first and the third rows of 4, we multiply 4 by R,, which is a unit
matrix whose first and third rows are interchanged.

Example. let
1 2 3 0 5 =2 3 1
A= -2 1 0 4}, A'=| 2 1 0 4
5 -2 3 1 1 2 3 D
Hence
9 0 1
RiA=A"whereR;=|0 1 0
1 0 0

The reader is asked to prove that elementary row operations do not change the rank
of the matrix on which they operate; that R, R, and R are nonsingular matrices;
and that | Ry [=—1, | R3| = 1. What is the value of | R, 17

THEOREM 1.  Any matrix can be reduced to an echelon form by a series of
elementary row operations.

The proot is by construction and is best illustrated on an example. Let

5 2 3 —4
A= 2 1 0 2
-3 -1 =3 6

Step 1: divide the first row by 5, giving

1 25 3/5 -—4f5 1/5 0 0
Aj=] 2 1 0 2 withRi=| 0 1 0
= S G 6 0 0 1

Step 2: multiply the first row by 2 and subtract it from the second row, then
multiply it by 3 and add it to the third row, giving

1 2/5 3/5 —4/57] 1 0 o
Ay =| 0 1/5 —6/5 18/5 withRl=]1 —2 1 o0
| 0 1/5 —6/5 18/5 ] |3

Step 3: multiply the second row by 5, giving
1 2/5 3/5  —4/57] 1 0 0
As=|0 1 6 18 withR3=|0 5 0
| 0 1/5 —6/5 18/5 | 0 0 1




